
GO Challenge 2:

Electric Stampede’s Approach

Kyri Baker, Constance Crozier, and Javad Mohammadi

Core Approach

2

● Focus on speed for finding a feasible solution

● No parallelization of the preventative problem

○ Exploited multiple nodes for resiliency

● Selective simplifications of the problem formulation

● No integer rounding: MIP + NLP

Computational details

3

● Code was written in Python

○ Added some overhead but sped up development

● We coupled two optimization problems:

○ Mixed integer linear program (CPLEX)

○ Continuous non-linear problem (IPOPT - cyipopt)

● Data read-in using functions provided in competition

An Overview of our Method - Preventative SCOPF

Objective:
Linearised cost functions +
binary switching costs

Constraints:
DC power flow equations
Gen switching constraints

Mixed-integer Linear Program
CPLEX

Pgk0, Xgk0, tjk0

Pgk, Xgk, tjk

Θik0

Network
parameters

4

Θik

An Overview of our Method - Preventative SCOPF

Objective:
Linearised cost functions +
binary switching costs

Constraints:
DC power flow equations
Gen switching constraints

Objective:
Quadratic generator costs, full
formulation for loads

Constraints:
AC power flow equations
Reverse ramping constraints
from contingencies

Mixed-integer Linear Program
CPLEX

Continuous Non-linear Program
IPOPT

Pgk0, Xgk0, tjk0

Pgk, Xgk, tjk

Θik0

Base case
solution

Network
parameters

Inputs to the
corrective solution

5

An Overview of our Method - Corrective SCOPF

Objective:
Quadratic generator costs, full
formulation for loads

Constraints:
AC power flow equations
Ramping constraints

Continuous Non-linear Program
IPOPT

Pgk, Xgk, tjk Contingency
solution

Base case
solution

6

Simplification: Generator cost functions

● Quadratic approximation to generator costs

7

M
ar

gi
na

l c
os

t

Pg

To
ta

l c
os

t

Pg

To
ta

l c
os

t

Pg

Simplification: Taps and Shunts

● Removed controllable shunts and transformer taps from the AC formulation

● Use of continuous variable relaxation sometimes back-fired

8

Score w/ varied taps
and shunts

Score w/ fixed taps
and shunts

65,091,360 65,333,260

Simplification: Removed line switching

9

(from an upcoming paper on
reducing the complexity of DC-OTS)

Computational Speed Improvements

Derived analytic formulation of the
Jacobian and Hessian

Calculated in vectorized form

class problem(object):

 def objective(self, x):
 # The callback for calculating the objective

 def gradient(self, x):
 # The callback for calculating the gradient

 def constraints(self, x):
 # The callback for calculating the constraints

 def jacobian(self, x):
 # The callback for calculating the Jacobian

 def hessian(self, x, lagrange, obj_factor):
 # The callback for calculating the Hessian

10

Computational Speed Improvements: Slack Variables

11

Try running AC code without slack variables first

AC code
(no slack variables)

Time Limit: 75%

Find closest point to
AC solutionConverged?

No

Questions?

